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PREFACE 
This book is a collection of problems and their related optimum design strategies and 

methodologies for optimum design cases at the level of undergraduate engineering design courses. 
Most of the design cases and the problems were selected from examination questions of the senior 
level engineering design courses and home/term studies assigned to the students during 1974-
2002 terms in the department of mechanical engineering of the Middle East Technical University. 
I have reviewed the full contents and re-written some of the text to improve the contents and 
make it suitable for senior students in any engineering program. 

The first part of the book reviews the structure of the mathematical models of general-purpose 
optimization problems, their structural formulation and related methodologies and procedural 
steps towards a feasible design product. Special emphasis is given to engineering design cases and 
engineering-related problems, without any mention and/or any hint about future design-based 
solution approaches. This is a necessary requirement, because the final product details are not 
known in the early stages of any design procedure. The physical product at this stage is not created 
yet, hence it is a usual practice to apply functional optimization techniques after the creative phase 
of the design activity1. However, this is not a necessary step for experienced designers. The 
optimization methodologies in creative phase must be carried in functional domain to develop and 
reach the best parameters for better functional performance. This fact is not much emphasized in 
the book, because the book is designed for undergraduate students and optimization on functional 
domain may require higher level expertise on optimization techniques and an engineering or 
scientific expertise on a narrow field. 

The second part of the book is about methodologies of optimization. The contents in this 
chapter are focused on graphical representation and mathematical models. 

The third part of the book is about the solutions procedures of the problems in the second part. 
I hope that the presented approach and basic phenomena for the design cases will help design 

engineers to develop better functional designs and feasible products. 
I would like to thank all my students for their best efforts to solve these problems during the 

limited time in the examinations. I would like to thank Miss Asuman Eripek also for her meticulous 
typing of the manuscript in 1984 during her work period in METU. 

I hope that the presented approaches in the book; the basic phenomena for the design cases 
and solution methodologies would help design engineers to develop better functional design 
products in their professional life. 

 
Abdülkadir Erden 

November 06, 2024, Ankara 

  

                                            
1 You may refer to the authors ‘Design Engineering’ books for more details on the functional design. 
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PART I 

PROBLEMS of OPTIMIZATION 
  Engineering is a series of human activities to create first, and then solve problem 

bundles… 
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I.1 INTRODUCTION 

If you would question your colleagues for a verbal definition of “Engineering 

Design”, you should expect differing definitions from each person who answers your 

question. This is because every person has a unique work and is interested and specialized 

in the narrow field of his/her work area. Although the answers normally differing 

verbally, it is possible to find many common features among the given verbal definitions. 

One of these common basic features of engineering design is that some DECISIONS 

must be made during the design procedure. Specifying the geometry of a functional 

product, machine and machine elements, selection of material, all are typical activities of 

mechanical engineering design.  

The design engineers have the all the responsibility for acceptable and successful 

functioning of the product; however, they do not have much freedom in their design work. 

Main issue to satisfy the future product (designet) performance, is to perform a well-

defined function, or more generally it should serve for the predetermined purposes and 

satisfy the pre-defined requirements. A car engine creates power by using some kind of 

fuel or energy storage element. Then a shaft transmits produced power to the drive 

mechanism or wheels of the car. Efficiency, high performance, high comfort and safety 

are some of the common requirements in this respect. As an alternative requirement, a 

toy car for children is preferred to be attractive and safe only. These humanious statements 

are user-initiated expectations and requests. They are declared explicitly mostly by the 

future users explicitly. More statements are added by the social and commercial entities, 

units and organizations. All statements make a basis for future decisions on the designers’ 

side. All statements related to requests and expectations are called REQUIREMENTS 

of the design. Any product feature and design/engineering activity during the design 

procedure cannot be accepted as satisfying and a valid decision, unless these requirements 

are satisfied fully by the future design product.  

In addition to the requirements, LIMITATIONS of a design activity and entity must 

be considered in any design process and satisfied fully by the designer. As it is expected 

that limitations of a design activity limit the application in several ways, mainly by the 

laws of nature and engineering science. In addition, human originated biological and 

social expectations create desirable features of a design product. The car engine case, 

given above, must develop a certain amount of power, but at the same time, it should be 

small and light so that it can be placed properly within the car body, and should not limit 

the passenger comfort. A thermally perfect engine, weighing several tons, is not a good 

solution (limit is not satisfied) for the present-day cars. The limitation (or one of the 

limitations) for the toy in the above example, is that the toy should not be dangerous and 

hazardous to the children. Thus, Power and Weight, or Attractiveness and danger are 

equally important for decisions of the designer. It is certain that the requirements and 

limitations (therefore decisions) must be based on acceptable, valid and satisfying 

available scientific and technological principles. 

“Decision” is not a first step, nor it is a last step in the design process. It always comes 

after a mental activity, called CREATIVITY. Creativity is usually and intimately based 

on accumulated engineering experience and on some previous works which were found 
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to be unsuccessful or incomplete at the recent stages of engineering development. Design 

creativity is the most fruitful step of the design process since it sprouts mainly in the 

designer’s imagination with an engineering and scientific background. 

 After the design is completed and if it is found to be successful, the next activity is 

MANUFACTURING. It is the production of the physical item in required quantities. 

Any design procedure usually results in more than one solution and all these solutions 

may satisfy the Requirements and Limitations. Theoretically, the number of these 

solutions is infinite. Each of these solutions (designs) is an alternative design product and 

is called a feasible design. At this stage, the designer faces the problem of selecting the 

best of these alternatives (Feasible Designs). The best design is named optimum design, 

-best in a predetermined way- of these feasible designs, and it is determined by using a 

concept/criterion. The mathematical procedure to obtain the specific solution (Optimum 

design product) is called OPTIMIZATION. The schematic block diagram in Figure I.1 

illustrates the place of optimization in a design process and other related activities. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure I.1 Structure of Engineering Design Procedure 
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production of a physical prototype or model which simulates the physical system under 

working conditions that are highly like the actual environment. Although results are more 

reliable in physical modeling, it is impractical and costly in most cases. Mathematical 

modelling approaches are applied satisfactorily in these cases/problems, if the results are 

sufficient to obtain valid and acceptable conclusions. In the case of optimization, 

mathematical modelling is the only applicable method since the production of several 

physical models, slightly differing from each other is not a feasible and practical approach 

at all. Conclusively, optimization procedures follow mathematical modelling, which is 

mainly a paperwork with sophisticated conceptual models. In some unique cases, it may 

be possible to find an exceptional application with reasonable and affordable work after 

experimental tests. A typical case may be spacecraft design, a case where failure of the 

design product endangers life of the astronauts, and high costs. Hence the probability of 

failure should be eliminated fully. 

Our aim in this text is to investigate concepts, methods, and applications of 

optimization by mathematical modelling. Therefore, it is necessary to discuss concepts of 

the previous paragraphs, Decision, Requirements and Limitations in mathematical 

models. Before working on these issues, some important concepts of optimization 

procedure should be discussed briefly. 

I.2 CONCEPTS IN OPTIMIZATION 

Widespread applications of optimization procedures in conventional engineering 

design are rather new, because of the limitations on computational requirements. It is a 

frequent and usual practice to select one of the the machine elements from an available 

list. This effortless step optimizes the designer’s Time and Effort (also Project Cost). Is 

well known that no engineering project can be completed theoretically by proper and 

detailed applications of all the related scientific theories within a practical contract 

schedule. The probability of error is balanced against the cost of improvement time and 

known errors are within the concept of “Safety Factor”. Good judgement on the part of 

the designer is essential in making reasonable “Approximations” in the design and 

arriving at acceptable compromises among the alternatives. Accuracy of design should 

not be sacrificed for simplicity of the computations, but they are both desirable. Thus, a 

successful designer is considered as the designer who makes valid approximations in 

design computations without loss in accuracy. 

As approximations are inevitable in engineering design problems, assumptions are 

also necessary for design solutions within the limited time given to the designer. Usually, 

physical systems can be modelled mathematically only after several assumptions are 

made. These simplify the mathematics involved in modelling the actual physical system 

and make possible a practical solution. 

In working on engineering design, designers cannot isolate the problem from the 

surrounding conditions. Besides the effects of the neighborhood machines, there are some 

limitations which have become quite important in recent years. We cannot use as much 

energy as we like, and the supply of fresh water and even fresh air are limited. The 

environmental pollution problem should be considered anywhere in the world with a 

engineering design product. Thus "the Optimum Solution" and "the Optimal Solution" 
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may not be same for most of the problems. We may develop an ideally optimum design, 

but it is usually never possible to produce it. 

When a designer mentions Optimization, he means Maximization or Minimization of 

a certain CRITERION for a SYSTEM. "System", in general, defines the boundaries of 

engineer’s or designer’s concern. It is either "a machine element", or "a machine" or "a 

plant” for a mechanical system. Generally, a system does not function all alone but works 

always in connection with some other systems. As an example, a car is driven on a road, 

an engine is coupled to a gearbox, gears are keyed to power shafts. Thus, the Shaft, the 

Key, the Gear, the Gearbox, the Engine, and the Car can be defined as Engineering 

Systems, in general. (The concept of "system" in the last paragraph is given only for our 

purposes and definitions are left open to discussion for other fields of study). Accordingly, 

a SUBSYSTEM is any element within the system. Thus, a gear box is a subsystem within 

a car, or car is a subsystem within the traffic. Subsystems of the gear are, teeth, hub, 

involute curvature, keyway, bead, rim, hub bead and arm. The design engineers define 

boundaries of the system and subsystems according to their considerations on the 

problem. If a system is optimized, the subsystems may not be optimum designs, or if all 

subsystems are designed as optimum, the system constructed of these subsystems may 

not be optimum Even the criteria of optimization may not be the same. The system may 

be designed for maximum economy, but the machine elements may be designed for 

maximum strength with weight or volume limitations. 

Another basic concept in optimization is the "criterion", or better “design criterion”. 

The criterion solely determines the set of optimum design parameters. If the criterion is 

changed, the optimum parameters will change accordingly. Design criterion (pl. Criteria) 

is a reference plane that defines the parameters as optimum or not. Every design problem 

has its own criteria considering the environment and users’-oriented choices.  

There may be cases where contradicting criteria are to be applied. A design product 

may be desired to be attractive and cheap. Hence appearance must be maximized, and 

cost will be minimized. All the optimization methods are developed to optimize usually 

one of the criteria. For the optimization of several criteria in the same design case, two 

approaches are suggested: 

i) The existing criteria can be re-defined as a new equivalent criterion. “Weighing 

Functions” are defined for each criterion and a new and equivalent criterion is proposed 

to sum up in a new conceptual criterion function. 

ii) The design criteria are usually desirable effects. In design cases where more than 

one design criterion exists, it is the designer’s duty to determine the “most significant” 

design criterion. Equivalent terms are the “Most Desired” or “Most Undesired (Least 

Desired)” criterion. Then the single optimization criterion is replaced by the new 

criterion. The choice of the most significant criterion among the existing criteria is 

sometimes one of the most difficult steps of the optimization process. The decision is 

solely up to the designer, and it is within his/her responsibility. The customer is not 

usually qualified to make such a decision and hence ignored. Few of the customers make 

their choice based on safety for household appliances. The appearance, functioning and 

economy are claimed criteria usually. A user assumes that the design product is safe 

normally without knowing design details. However, human safety should be an implicit 
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(hidden) criterion that should not be ignored at all. A similar implicit design criterion is 

the cost of the product. under consideration in such a case, the safety of the device is one 

of the design criteria. 

Once the designer decides on the most significant and/or equivalent criterion, the 

remaining criteria in the original formulation should not be discarded but must be 

considered as design constraints for the problem. Design can be carried out to optimize 

the “most significant criterion” while remaining within the confines of the constraints, 

(secondary design criteria). If all the parameters of the design cannot be determined by 

using the “most significant criterion” then second most significant criterion should be 

considered, and the design should be re-optimized using the optimum parameters as 

invariant values after the previous optimization stage. 

The design criteria are always dependent on the statement of the design problem. As 

an example; a spring design can be carried for minimum weight and volume for an aircraft 

application. The very same spring design (same spring gradient and force) can be carried 

out for minimum or maximum free length or external diameter on a ground application. 

The designer will make his/her design decisions accordingly depending on the design 

requirements and limitations. 

Optimization is always an appealing and attractive field for designers. An 

inexperienced designer would like to optimize everything in his/her design project 

whenever he/she assigned to work on an engineering system. The designer should not 

rely on his solution during the early stages of the design process, and he/she should not 

attempt at all for an optimum design. The first goal in any design project is to satisfy the 

main design requirements fully. Example: Minimizing the weight of a new sewing 

machine which does not sew properly, is not a reasonable approach. It is certain that the 

selected elements of the machine will be changed soon; thus, optimization will be a 

useless effort. Optimization must be carried out when the whole system with all the 

subsystems and elements are defined properly and modelled mathematically strictly for 

proper functioning. Optimization should be the last stage of a design process before the 

final presentation and production of the physical product. 

I.3 FORMULATION OF OPTIMIZATION PROBLEMS 

It is possible to develop some subjective optimization methods where engineering 

intuition and experience is the only tool. In this section optimization problems, which can 

be formulated analytically will be considered. 

Every optimization problem has a criterion. If all the design variables were known, it 

would be possible to calculate the numerical value of the criterion. The design variables 

(parameters) are classified as input parameters, output parameters and dummy design 

parameters. The input parameters are independent parameters of the design. Their values 

can be varied freely within certain limits. The output parameters are dependent on and 

determined by input parameters. The dummy parameters are used in calculating output 

parameters in terms of input parameters. They are used during the design optimization 

but do not affect the results directly. All these design parameters define a particular set. 

 nxxxx ...,.........,, 321   
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where x1, x2, .........xn are the design parameters, including input, output, and dummy 

parameters. Thus dimensions, material parameters, weight, natural frequency, spring 

gradient are design parameters. 

Once the numerical value of any set nxxx ,......, 21  is known, the design is fixed, and 

value of the design criterion is also known. The mathematical equation which expresses 

the design criterion in terms of design parameters is called CRITERION FUNCTION. 

Mathematically we have.  

 nxxxxFF ,........,, 321    (1) 

where x1, x2, .........., xn are the same parameters discussed above. The equation can be 

in general, in any form, linear, nonlinear, transcendental, numerical or even graphical. 

The form determines the method of solution.  

After an optimization case is formulated, value of the criterion function F will be 

depended on the various combinations of the sets of design parameters. In cases where 

there are continuous varying parameters (like time dependent cases), behavior of the 

criterion functions will be varying as well. In these cases, the time parameter should be 

treated as an independent parameter.  

The main aim in optimization is to find a unique set of design parameters which will 

give the best (highest or lowest) value of the criterion function for a predetermined 

purpose. This procedure includes mathematical optimization also; however, engineering 

optimization is more comprehensive and wider formulation of the simple mathematical 

model. All activities of this procedure to determine the best and unique parameter set is 

called optimization. It should be remembered that mathematical optimization is a single 

step in design optimization.  

Decision on the feasible sets of design parameters is based on two groups of 

constraints which are derived from the requirements and limitations of the design process. 

FUNCTIONAL CONSTRAINTS are equations which relate the design parameters to 

each other. They are usually mathematical expressions for the laws of nature governing 

engineering laws, geometric relations, and similar equations. Functional constraints are 

written in terms of the design parameters like the criterion function, 

g ( x1, x2, x3,.......xn ) = 0                                                                                   (2) 

The number of independent functional constraints is limited by the number of design 

parameters. If they are equal, there is only one set of parameters which satisfy the 

functional constraints, therefore we cannot have an optimization problem. For a real 

solution, the number of independent functional constraints must be less than number of 

design parameters, i.e., 

 m < n     (3) 

Where m is the number of functional constraints. 

Other sets of constraints are inequalities which limit the feasible or applicable ranges 

of the design parameters and are called REGIONAL CONSTRAINTS. They are 

necessary for physical realization of the system, for the purposes of compatibility and 

applicability of the design product. The number of regional constraints is not limited. 

h ( x1, x2, x3,......xn) > 0                                                                                     (4) 
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The constraints can have two types of limits. If the limiting values can be changed for 

the benefit of criterion function or other less significant criteria, then it is called a LOOSE 

LIMIT. If the limiting values cannot be changed under any condition, then it is a RIGID 

LIMIT. Whether a limiting value is a rigid or loose limit should be determined by the 

designer. This decision is reached by considering the problem statement.  

Considering three groups of relations (criterion function, functional constraints, and 

regional constraints) an analytical optimization problem can be formulated in its most 

general case as it is displayed on the next page. 

The most difficult part of optimization problems is to put the problem statement in the 

mathematical form. The problem must be carefully analyzed and studied so as not to 

exclude any of the constraints. Even if one of the constraints is not considered, the 

optimum solution will not be correct or more truly, a valid one. The designer must be 

very careful in considering all the related constraints. Although some of the constraints 

are given explicitly in the problem statement, some are implicit and should be discovered 

by the designer. For example, strength of the machine elements is not explicitly stated in 

the problems, but almost every machine element must be checked for strength. Once the 

problem is put in the given standard form (eq.6), the rest of the work is easy. One of the 

optimization procedures can be applied without much difficulty. Computers can also be 

used after the problem is properly formulated by the designer. A list of books which 

discuss solution methods of optimization problems are included in the reference list. 

The criterion function, functional constraints and regional constraints together define 

the mathematical model of the physical system. The effect of any parameter can be 

investigated theoretically. The success in mathematical modelling depends greatly on the 

completeness and validity of the three groups of relations. 

 

 

Maximize 

 F = F(x1, x2, x3,........., 

xn)   (5) 

Minimize 

Subject to: 

 g1 (x1, x2, x3, ............., xn) = 0 

 g2 (x1, x2, x3, ............, xn) = 0 

 gm (x1, x2, x3, ............, xn) = 0 

where  m<n 

 h1 (x1, x2, x3, ............., xn)  0 

 h2 (x1, x2, x3, ............., xn)  0 

 hp (x1, x2, x3, .............., xn)  0 

where p has no limit. Writing the above relations in a more compact form, we 

obtain. 

Max. or Min. F = F (x1, x2, x3, ........., xn) 

s.t.: gi (x1, x2, x3, ..............., xn) = 0 i = 1,..m and m<n (6) 
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 hi (x1, x2, x3, ............., xn)  0 i = 1,…p and has no limit 

I.4 PHILOSOPHY OF OPTIMIZATION PROBLEMS for DESIGN 

ENGINEERING 

Optimization concepts in design activities should be consider4ed as a strong guidance 

model for the best design performance, which is optimization all alone and if applied 

properly may improve performance of the design product. However, a principal issue 

should not be oversighted. It is a known fact that all design processes must manage natural 

and imposed limitations and requirements. Mathematical optimization in pure theoretical 

modelling is straight forward process. Once a mathematical model is developed, 

obtaining the best (maximum and/or minimum) numerical results is not difficult in many 

cases. The difficulty is to reach design optima to satisfy the unclear requirements and to 

remain within the constraints of real-world. These issues appear as requirements in 

optimization and constraints (limitations) in the design problem. 

Requirements are developed over well-defined numerical data. 

Constraints define acceptable (and/or unacceptable) regions of the design process. 

However, it should be emphasized that requirements and constraints are not on the design 

processes, but they are to be implemented on the design product. Since the design 

products are normally unknown/undefined existence of goods, property, and simply 

existence. Existence of design items are imagination at early design process, physical 

realization is achieved only after a proper design2 activity. 

Human requests and willingness of best and/or better products, their implemented and 

associated engineering concepts of existence, human desire for better and/or best 

accessible comfort are the basic concepts in the roots of optimization activities. As this is 

true for consumer society, similar preference requests are observed on the industrial side 

where the producers claim to reach economically producible products to sell the public 

society. 

The above concepts are converted to and represented by mathematical expressions in 

the book, The link and process of conversion from abstract concepts and imaginary 

products to real physical items to change human comfort is the design process, attempts 

to make the design and design process the best or better than others, with a mathematical 

, are optimization. 

1.5 CHAPTER CLOSURE 

It should be clearly understood that the optimization procedures are not a necessary 

step in engineering design. However, if the designer plans to develop a unique design 

product with better/best features, he/she must apply optimization techniques strictly. It’s 

the only way for optimum design. The bad news is that design is a conceptual activity 

whereas optimization is a mathematical procedure. Here it is within the responsibilities 

of the designers to convert the physical product (design) model into a mathematical 

                                            
2 Remember to add ‘engineering’ to ‘Design activity’ or ‘design process’ for real physical items after a 

mind driven imagination activity. A clear separation is known to exist between engineering design and 

design engineering. In practice. 
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expression. Good news here are that design product is in the designer imagination at this 

stage, hence a shift into mathematical model may be smooth and reliable for the possible 

physician design product.This the main goal of this book is to introduce and practice 

designer with simple design problems to practice theoretical procedures. Later we hope 

that today’s students may have chances to apply optimization approaches for professional 

design cases. Remember always that the basic optimization process and procedure is 

exactly the same, except that the number of design parameters is significantly higher in 

the professional world than the students’ level work.  

My first suggestion in this respect is to double or even multiply the design problem. 

Explicitly, you may identify smaller units of the larger design product and then define 

smaller optimization problems. Separation procedure requires expertise in a narrow field 

of science and/or engineering.  By this way, you may define new but simpler problems 

Then you may apply two or more optimization approaches and combine them later. 
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II.1 INTRODUCTION 

Optimization can be visualized in n+1 dimensional space (n design parameters and 

criterion function F form the (n+1) space). The constraints of the design problem bound 

a region in space and any point within this region is a feasible point of the problem. The 

optimum point is found by a search among these points. Mathematical form of criterion 

function and constraints determine the searching method. If we have linear relations, then 

the corner points of the intersecting lines and planes will give us feasible points. If non-

linear relations are under consideration, curved surfaces should be investigated. By 

mathematical techniques, the designer moves on these curvatures and finds the maximum 

or minimum point. 

The selection of the optimization method is determined by the nature of the problem. 

Figure II.1 gives an optimum design probe schema. It gives only the basic rules, and 

further methods should be decided by the designer. 
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Figure II.1 Optimum Design Probe Schema 
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Q.1 Is it possible to develop a mathematical model for the physical system? 

T.1 Apply Logical Optimization Techniques 

Q.2 Are the constraints and criteria function linear? 

T.2 Apply Linear Programming Techniques  

Q.3 Is there any regional constraints? 

T.3 Apply method of differentiation 

Q.4 Is the criterion function differentiable? 

Q.5 Is the method of calculus of variations applicable? 

T.4 Apply calculus of variations techniques 

R Reformulate the problem. 

T.5 Apply engineering optimization approaches. 

 

It is possible to classify the optimization methods in several ways. Constrained and 

Unconstrained Optimization method of general classification. Numerical and analytical 

Optimization is another way. For a comprehensive general classification, mathematical 

backgrounds may be important and determinative. However, our main concern in the 

book is engineering application and therefore engineering methods. Hence, we prefer to 

classify similar types of type of applications which display similar performance 

behaviors. 

The following pages group the similar procedures of optimization for a practical 

purpose. 

II.2 METHOD OF SIMPLE DIFFERENTIATION 

Some of the optimization problems without any regional constraints can be solved by 

simple differentiation. Consider a single variable function F(x) as shown in Figure II.2. 

This is a criterion function with one design parameter. It is known that points B, C and E 

can be computed by simply differentiating F(x) and setting it equal to zero. This is 

because the derivative 









dX

dF

 is the slope of F(x) and the slope is horizontal at the points 

B, C and E. The roots of the equation. 

  
0

dX

dF

 

gives xB, xC and xE where xA is a relative minimum xB is a relative maximum and xE is a 

saddle point. The word “relative” is used to indicate that it is only a local optimum and 

the end points of the curve could have larger or smaller values than the maximum point 

(maxima) or minimum point (minima) respectively. Several cases are illustrated in 

Figure. II.2. The second derivative (d2F/dx2) indicates whether the computed root is a 

maxima or minima. If it is a negative value, the root is a maximum, If it is a positive value 

we have a minimum value. The saddle point gives zero for the second derivative. 

This procedure can be extended to n variable functions. 

F = F(x1, x2,.........,xn) 
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The maxima or minima points (together they are called extremum) can be determined 

by taking partial derivatives of the given equation with respect to each of the variables. 

These equations are equated to zero, thus ‘n’ independent equations are obtained. 
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Figure II.2 Arbitrary forms of  “one-variable function” F(x) 
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Simultaneous solutions of these equations give the extremum point(s). However, it 

should be remembered that these point(s) may not be absolute maxima or minima. As it 

is shown in one variable must be checked to determine whether it is a relative or absolute 

extremum. 

Further, suppose that, besides the n variable function, we have several functional 

constraints. 

Max. Or Min. F=F (x1, x2, x3, .......xn) 

s.t.  gi (x1, x2, x3, ............xn) = 0 i = 1, m  and m<n 

In this case, the constraint equations must be included in the solution to have feasible 

point. In other words, the design variables x1, x2, ......xn which satisfy the functional 

constraints must be considered in the derivatives. 

The functional constraints can be eliminated by solving a common parameter between 

the criterion function F and a functional constraint. The equivalent of each of these 

variables solved from any g function is substituted into the F function. Mathematically. 

Take any g (x1, x2, ......xr-1, xr, xr+1, ..., xn) = 0  

Solve for xr, where xr is any variable which explicitly appears in  

F = F(x1,x2,..........., xr, ....,xn), 

xr  = r(x1,x2, ..........xr-1,xr+1, ....., xn) 

Substitute this equality into F, we have a new function; F’ , 

F’ = F’(x1,x2, ........xr-1, xr+1, ...........xn 

Hence a functional constraint and a design variable, are eliminated from the problem 

formulation. Since there are m functional constraints in general, then m design variables 

can be eliminated. The final form of the criterion equation is a function of (n-m) variables. 

F’ = F’ (X1, X2, ......, Xn-m) 

where X1, X2, .........Xn-m are the parameters which are not eliminated. Then we have a 

new function F’ which is not constrained (does not have any constraint) and the extremum 

points can be found by partial derivatives as it is discussed above. 

II.3 METHOD OF LAGRANGE MULTIPLIERS 

The applicability and limitations of this method are the same as the method of simple 

differentiation. The regional constraints are not considered in mathematical solutions. We 

start again in the mathematically proper form of the problem. Mathematically Total 

Derivative of the criterion function is considered. 

F = F(x1,x2,x3, .....,xn) 

n

n

dx
ax

aF
dx

ax

aF
dx

ax

aF
dF  ....3

3

1

1  

To have an extremum 

dF = 0 

must be satisfied. If there were no functional constraints, i.e., if p=0, then 

 x1, x2, .... xn would be independent. Thus, dx1, dx2, .......dxn would be independent and 

therefore their coefficients would be equal to zero simultaneously. 

,0
1


ax

aF

 
,0

2


ax

aF

.....
0

nax

aF

  



Sayfa 21 
 

This is discussed before as an unconstrained problem. Since there are m functional 

constraints which relate the design parameters, the coefficients in the total derivative are 

not zero anymore. The functional constraints must be involved somehow in the solution. 

Lagrange has devised a method where constraints are included in the criterion function. 

He considered the total derivatives of the criterion function and functional constraints 

together and summed all of the equations. 

0....2

2

1

1

 n

n

dx
ax

aF
dx

ax

aF
dx

ax

aF
dF

 

0....2

2

1

1

 n

n

iii
i dx

ax

ag
dx

ax

ag
dx

ax

ag
dg

 

i = 1, m and m<n 

Since the units for dF and each dgi are different, for a valid summation we must 

introduce some dummy coefficients for each dgi. These are called Lagrange Multipliers 

and usually abbreviated as i . Then we have. 
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Since all of the functional constraints are included in this equation, the differential 

parameters dx1,dx2, ..., dxn are all independent now and, therefore their coefficients must 

be equal to zero. 
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

            for j=1, n 

There are n such equations, but there are n design parameters plus m artificial 

parameters i  (Lagrange multipliers). Considering constraints also, we have (n+m) 

equations. Thus, the number of unknows and available equations are the same hence a 

simultaneous solution will give us the optimum point. 

If the above equation is examined carefully following arrangement is evident since all 

i  are independent of xj. 
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Also note that the functional constraints can be written in the following form: 
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The terms within the above brackets are the same and it is called LAGRANGIAN. 
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It is apparent that the new criterion function is L and functional constraints gi 

multiplied by a Lagrange multiplier. The Lagrange (L) is a function of n+m variables. 

),....,,,,......,,( 321321 mnxxxxLL   
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and L has no functional constraint. Hence total derivative vanishes at the optimum 

point and coefficients of variables should be taken equal to zero. 

0,.....0,0,0,........0,0
2121


mn a

aL

a

aL

a

aL

ax

aL

ax

aL

ax

aL

  

where the last m equations are original functional constraints. Solving (n+m) 

equations for (n+m) parameters, we can obtain the extremum, point. 

One should note that the functional constraints gi added into the criterion equation are 

all equal to zero, therefore optimum values of L and F are the same numerically. 

Apparent advantage of the method of Lagrange multipliers is that it is straightforward 

and numerical methods aided by computers can be applied easily. 

The methods of simple differentiation and Lagrange Multipliers can be applied 

directly to the problems without any regional constraints. When regional constraints exist, 

then the solution should be conducted as if there is no regional constraint. If the results 

satisfy the regional constraints, then it is an optimum and feasible solution. If not, the end 

points are the possible feasible and optimum solutions. Depending on the effect of 

parameters on the criterion function end points are decided as extremum points. This will 

be illustrated in problem. The same problem can be solved by the method of Lagrange 

Multipliers and the same numerical answers should be obtained. This is left to the reader. 

II.4 GRAPHICAL METHODS  

Purely graphical methods are seldom finding application in practice since the number 

of parameters which can be used is limited to 1 or 2 at most. When it is a three-parameter 

problem it is impossible to apply graphical methods on the 2-dimensional plane of paper. 

Optimization by graphical means is based on plotting the criterion function and the 

functional and regional constraints. The criterion function with variable design 

parameters forms either parallel or crossing or at least similar curves. These are illustrated 

in Fig. II.3 for one dimensional case. The value of F increases in a preferred direction 

depending on the form of the equation. The number of these criterion functions is limited 

by the functional and regional constraints when they are plotted on the same figure. The 

regional constraints exclude a certain area in F vs x plane. The excluded area is not 

feasible for optimum solution. The regional constraints define a curve therefore the 

optimum point must be necessarily on this curve. This is illustrated in Fig. II.4. The 

feasible region and optimum point become apparent when all the curves are plotted on 

the same figure. 
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Figure II.3 Parametric forms of mathematical equations. 
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Figure II.4 Graphical representation of Feasible Regions. 
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II.5 LINEAR PROGRAMMING  

It was shown that any optimization problem can be formulated in three groups of 

equations. 

Max./Min. F=F(x1,x2,......, xn) 

s.t. gi(x1,x2,.........., xn) = 0 i = 1, m  m<n 

 hi(x1, x2,........., xn)  0 i = 1, p  p has no limit. 

There is a vast group of problems where the above relations are all linear. Thus, the 

general form of the optimization problem is in the following form: 

Max.Min. F=f1x1+f2x2+f3x3+..........+fnxn 

s.t. gi1x1+gi2x2+...........+ginxn+ci = 0 

 i = 1, m m<n 

 hi1x1+hi2x2+............+ hinxn+ki0 

 i = 1, p p has no limit. 

Where Ci and Ki are plain numerical constraints. 

Further the problem can be so arranged that all the design parameters can have positive 

values only. 

 x1  0,  x2  0, ............xn  0 

This is called a nonnegativity condition. 

The above problem can be re-formulated in the matrix form. The criterion function is 

a product of two matrices. That is 

F =  f T  x  

Where  f T is the transpose of  f 

 

  f1   x1 

  f2   x2 

 [f] = f3           and     [x]= x3 

  …   … 

  fn   xn 

 

 

Similarly functional constraints can be written in matrix form. 

 

[G][x]=[C] 

Where.  

  g11 g12 … g1n  

  g21 g22 … g2n 

 [G]= …………………… 

  …………………… 

  gm1 gm2 … gmn 

 

and 
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C1 

  

[C]= C2 

  .. 

 

 

Cm 

 

The regional constraints transform.  

 

[H][x] > [K] 

 

  h11 h12 … h1n    -K1 

  h21 h22 … h2n    -K2 

 [H]= …………………. and   [K]= -K3 

  …………………    … 

  Hp1 hp2 … hpn    -Kp 

 

 and non-negativity conditions in matrix form are: 

 x    0  

Considering the above matrix equations, the optimization problem can be written in 

terms of four matrix relations. 

Max. Or Min. F =  f T  x  

s.t.  G  x  =  C  

  H  x    K  

 x    0  

Any optimization problem which is formulated in this form can be solved by a method 

which is called Linear Programming. It is possible to show the method of solution by 

matrix algebra, but it is beyond the scope of this text. Two dimensional problems can be 

solved by purely graphical means, and it is very useful. If the number of parameters is 

more than 2, there are some methods (most applicable one is Simplex Tableaux) to obtain 

the optimum point. Although hand calculations are possible it is time consuming and 

prone to make calculation errors. Instead, computer techniques are preferred. Almost all 

companies provide ready-to-use Linear Programming packages supplied with their 

computers. The only work to be done by the user is to supply the numerical coefficients; 

in other words, the matrices  f , G and  H  must be given as the input data. The 

optimum point (if exists) and some information is given as output by the computer. 

Some optimization problems cannot be readily put in a format suitable for Linear 

Programming. The most common headache for mechanical design applications is the non-

negativity conditions. Generally, we have: 

M  xr  + M 

where xr is any design parameter and M is a positive number, including . It is possible 

to define two new parameters xr’ and xr” such that: 
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111

rrr xxx     

with the condition. 

,01 rx  011 rx  

Therefore, xr is replaced by 
111

rr xx  , the linearity of the relations is still maintained, 

and non-negativity conditions are satisfied.  

If the criterion function or constraints are not in linear form, we can either approximate 

them as linear equations in certain ranges (see Fig. II.5) or apply some mathematical 

tricks. To illustrate this suppose we have a function as: 

nxxxxF a

n

aaa .......321 321  

where a1, a2, ..........an are constants. This is an exponential equation and cannot be 

used in Linear Programming. If we take logarithm of both sides, we obtain a linear 

equation in terms of logarithms of parameters. 

nn nxanxanxanF   ......2211  

Defining new parameters as 

nFF 1
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we have 

11

2

1

2

1

11

1 ............. nnxaxaxaF   

This is a linear equation, and the method can be applied without any difficulty. Some 

other mathematical tricks, depending on the user’s ingenuity, can be found and applied 

successfully. 

It was stated that two-dimensional Linear Programming problems can be solved by 

graphical methods. This will be illustrated now. Consider a two-parameter problem in its 

most general form. 

Max. Min. 2211 xfxfF   

s.t.:  0,0

0

...................................

0

0

0
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2222121
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Kxhxh
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All these relations can be shown on a 2-dimensional plot. Firstly, non-negativity 

conditions exclude all the quadrants except the first. Consider criterion function F in the 

first quadrant. Since f1 and f2 are known numerically, for any arbitrary value of F, a 

straight line can be drawn in x1-x2 plane (Fig, II.6). F1, F2, ......are such lines and they are 

naturally parallel. The value of F increases in the direction of arrow depending on the 

signs of f1 and f2. That is: 

Either F1>F2>F3>F4 ..... or F1<F2<F3<F4 is true. 
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Hence, the optimum (Maximum or Minimum) point can be reached by moving in the 

direction (or against it) of arrow. How far we will move is determined by the constraints.  

The functional constraint defines a line in x1-x2 plane and if it is satisfied by the design 

parameters, it defines a feasible region along the line segment AB only. Any point on this 

line is a feasible point and the optimum point is one of these (Fig.II.7). 

 

 

 

 

 

    xA          x  xB 

 

Figure II.5 Approximating a function in linear form in region xA < x > xB 

 

 

 

 

 

 

 

Figure II.6 Criterion function in two-dimensional plot. 

 

 

 

 

 

 

 

Figure II.7 Functional constraint in 2D plot. 

 

 

 

 

 

 

 

Figure II.8 Regional constraint in 2-D plot. 
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Consider the regional constraints in x1-x2 plane. Let us take the first, 

01212111  Kxhxh  

Depending on numerical values and signs of h11, h12 and K, the inequality relation 

divides the first quadrant into two regions (Fig. II.8). The points in the hatched region do 

not satisfy the inequality therefore they are not feasible points. Any point in the feasible 

region may be an optimum point. When the regional constraints are plotted on the same 

figure, we obtain the common feasible region defined by all the regional constraints (Fig. 

II.9). Further imposing the functional constraint on this figure (Fig. II.10), we have the 

final feasible region as a line segment in x1-x2 plane. Usually, such problems do not have 

functional constraints, thus similar regions as shown in Fig. II.9 are obtained. 

To find the optimum point, it is sufficient to draw the parallel lines representing the 

criterion function. The maximum or minimum point will be on one of the corners of the 

feasible region. 

Applications of Linear Programming problems can be summarized in 4 groups. 

1- Alloying: Several elements with different costs and properties are considered and 

Linear Programming is applied to find minimum cost with the given constraints. 

Metallurgical alloying, liquid blending, ore combinations and cattle feed mixing are 

examples. 

2- Job Allocation: The machines (capacity and time) labor, and raw materials are 

arranged such that the total profit from production of several items is maximized. 

3- Production Scheduling: The production rates of several products are determined by 

considering Supply, Demand, Inventory and Storage facilities. 

4- Transportation: The best routes and schedules are determined for all sorts of vehicles. 

 

 

 

    

    

    
 

 

 

 

 

Figure II.9 Several Regional Constraints and imposed functional constraint. 
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II.6 AN APROACH TO SOLUTIONS OF OPTIMIZATION PROBLEMS FOR 

MECHANICAL ENGINEERING APPLICATIONS 

An optimization method, applied particularly in mechanical engineering design, is 

described by Johnson in his several books and papers (14, 15). It is a clearly described 

procedure for optimization problems rather than being a mathematical optimization 

method. The steps of optimization are clearly defined and confusion in multi variable 

problems are reduced by a systematic approach. Several interesting examples are solved 

by the described procedure. We think that the procedure given by Johnson can be applied 

to any optimization problem and the mathematical methods described in the previous 

sections can be used within the procedure. In the next sections, the procedure will be 

described with some small changes. But before this, there are several concepts which 

must be explained clearly. 

Any machine or machine element has three basic properties. 

1. Functional Requirement Properties. 

2. Desirable or Undesirable Effects. 

3. Uniqueness. 

Now, we shall study these properties: 

1. Functional Requirement Properties: Any machine or machine element is 

designed for a certain purpose. It must perform its functions in this predetermined way. 

Consider a spring, which is designed to exert a force F. Then the force F is a functional 

requirement. It is a property that we expect from the spring. Similarly, a shaft must 

transmit torque, a gearbox must transmit the power at a certain input and output speed, a 

cam must give a predetermined displacement to its follower, and finally a structural 

number (leg of a table in its simplest form) must carry a certain weight. The functional 

requirements must be satisfied in a predetermined way, as predicted by the designer. 

2. Desirable and Undesirable Effects: In designing the machines and their 

elements to satisfy the functional requirements, there are some properties which are 

unavoidable for a physical system. For example, a spring cannot be designed with an 

imaginary material and since all of the real materials have a certain upper limit for the 

stresses, then the stress is an unavoidable property. Similarly, any real material has a 

weight under the gravitational field, and it is again unavoidable. Deflection, space 

occupancy, vibration and natural frequency are other properties for any simple helical 

spring. Some of these properties are desirable and some are undesirable depending on the 

application. For example, weight in some applications can be desired whereas in some 

others it is not desired. Other examples for desirable and undesirable effects are surface 

quality, machinability, length, diameter, appearance, comfortability stability, volume, 

cost, production time etc. All these effects, if significant, must be considered in any 

optimization problem. 

3. Uniqueness: Any machine or machine element can be defined completely if all 

the dimensional parameters and the materials parameters are specified. This statement 

can be put in reverse order; any machine or machine element can be specified completely 

once all the material parameters and geometrical parameters are known. The geometrical 

parameters are length, diameter, width, height, tolerances etc., and the material 
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parameters are Elasticity modulus, Yield Point, Weight density, Unit Cost, Poisson’s ratio 

etc.  

In any design problem statement, the above properties are either specified numerically 

or their allowable limits are given. Thus, a diameter can be required to lie between, say, 

5 mm and 15 mm or a spring force can be stated to have values 50 kg  10 kg.  natural 

frequency can have any value between 0 and  in its widest range. Usually, all the 

properties and their corresponding parameters have lower and upper limits. If these lower 

and upper limits are required, it is called a RIGID LIMIT, if slight changes on these 

limiting values are permissible, then these are called LOOSE LIMITS. Loose limits are 

useful when it is possible to obtain better solutions for the design problems with slight 

changes in the limiting values. Apparently, these “Slight changes” should not make the 

solution impossible or impractical.  

During the mathematical formulation of the problem, the above stated properties are 

expressed in terms of four groups of parameters. 

1. Functional Requirement parameters, 

2. Desirable and Undesirable effect parameters,  

3. Geometrical parameters, 

4. Material parameters. 

 Functional Requirement parameters include the mathematical equivalents of the 

functional requirement properties. They are usually external to the machine or machine 

element. Mostly they express the relation between the neighborhood machines. (Torque 

of gear is transmitted from a shaft, and shaft receives the power from an electric motor). 

Thus, before starting a design, the functional requirement parameters must be known and 

determined due to the external effects. Sometimes the resulting values of these parameters 

are defined as the effect of the design to the design to the surroundings. In both cases, it 

is considered as the overall reaction to the next machine or element (system). 

 Desirable and Undesirable Effect parameters are determined terms of design 

parameters during the design process. They do not affect the design of the other machines 

or elements directly. Only a cumulative effect on the most general system is possible. For 

example, the total cost of a machine is the sum of the cost of each machine element. 

 Geometrical parameters are usually independent of each other, but they determine 

the previous two groups of parameters. If they are limited, the geometrical parameters 

are dependent on each other. There may be also limiting values on the geometrical 

parameters. Usually, the designer finds great freedom in changing the geometrical 

parameters independently. But he must be careful not to violate the limits. The 

geometrical parameters are mostly continuous variables like diameter or length of a 

shaft to be turned on a lathe. But sometimes they have stepwise variation. The 

standardized machine elements (Roller bearings, bolts, screws, gears (partially) and 

others). Have some preferred dimensions and the designer must make his choice among 

these values. 

 Material parameters are described in discussing material properties. Their 

common property is the interdependence of all the material parameters. If some of the 

material parameters are determined (say, yield point) the number of alternative materials 

is limited. In any design application, the number of available materials is limited and 
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not more than 10 or a close figure. If the material name is known, then all of the material 

parameters are known. Specifying C-1040 with its commercial name is equivalent to 

specifying all its related parameters. 

Most of the parameters in these four groups must remain within some practical 

limiting is called a feasible parameter set. One of these sets is the optimum design. The 

optimization is based on one of the functional requirements and/or desirable and 

undesirable effects. 

There are three groups of mathematical relations in any optimization problem as it 

was discussed before. The names given previously were adapted from mathematical 

theories. We shall now introduce and use names which are more proper for engineering 

design. 

The Primary Design Equation (PDE) corresponds to the criterion function. It is the 

most significant functional requirement, Desirable effect, or Undesirable effect. The 

choice of maximization and minimization depends on the problem. The most common 

applications are given below. 

Minimize: Cost, Weight, Volume, Deflection, Natural Frequency, Length, Speed, 

Instability, Force, Area, Stress, ........ 

Maximize: Power Transmission Capability, Energy Storage, Speed, Natural 

Frequency, Weight, Length, Stability, Force, Area, Safety Factor, ....... 

The designer must be careful that some negative properties like cost must never be 

maximized and positive properties like efficiency, power transmission capability must 

never be minimized. 

Besides the nature of the property to be optimized, the application also determines the 

choice. Consider a shaft, exactly similar in two different applications like Stone Crashing 

machine and Aircraft. The criterion of shaft design for the Aircraft will be “minimum 

weight”. The weight is not important at all in the first case and perhaps torque 

transmission capability will be the design criterion. 

Subsidiary Design Equations (SDE) are all the equality relations other than the 

Primary Design Equation. These were called previously as functional constraints. 

Limit Equations are the regional constraints of mathematical methods. 

All the equations should be arranged such that the parameters stated above will appear 

as independent parameter groups. This is not always possible, and some mathematical 

tricks (like defining new parameters) is applied in such cases. These are illustrated in the 

examples to be given later. 

II.7 PROCEDURE OF OPTIMIZATION (9 STEPS) 

Any optimization problem derived from engineering applications and its solution can 

be modelled in 9 steps3.  

Step 1: Draw a free hand sketch of the system and show all of the related parameters. 

Select the independent parameters which will uniquely define the geometry. If a choice 

exists, select parameters which are either specified as functional requirements or limited 

to permissible values. 

                                            
3 9 steps may be valid only for engineering based design problems. 
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Step 2: Decide on the most significant criterion for optimization and write the 

mathematical expression. This is the Primary design equation (PDE). If possible, write 

this equation in terms of parameter groups. 

Step 3: Write the equations for all other significant functional requirements and 

desirable and undesirable effects. These equations are Subsidiary Design Equations 

(SDE). 

Step 4: Write the mathematical limit equations for all the parameters. Indicate rigid 

and loose limits. 

Step 5: Eliminate a common design parameter from the Primary Design Equation for 

each Subsidiary Design Equation. Re-write the remaining Subsidiary Design Equations 

and Limit equations in terms of the remaining design parameters. If choice exists 

eliminate unlimited and unspecified parameters. Do not eliminate material parameters 

since they are dependent on each other and have limited ranges. Dimensional parameters 

limited within finite ranges should not be eliminated, if it is not necessary. At the end of 

this step, the original design equation is written in terms of limited parameters and 

geometrical parameters. This equation is called Develop Primary Equation (DPDE). 

Step 6: From the Develop PDE, obtain variation of the design criterion w.r.t. each of 

the parameters (except material parameters). Draw rough sketches indicating the general 

trend of the criterion within the feasible range of the parameters. 

Step 7: Considering the variations determined in the previous step, obtain optimum 

design quantities. If it is necessary, apply the mathematical optimization techniques. The 

set of optimum parameters defined at this step must define a unique system with the 

design criterion as optimized. 

Step 8: The only remaining parameters are material parameters, and they can be 

independently isolated from the other parameters before the 7th step. Select the optimum 

material by considering the Material Selection Factor and available materials for the 

design problem. Remember that the optimum material must be one of the available 

materials and material parameters are dependent on each other. 

Step 9: Determine optimum values for the eliminated parameters by using the known 

optimum parameters.  

II.8 OPTIMUM SHAPE DESIGN 

Sometimes it is required to determine the optimum shape of machine element with a 

particular criterion. Examples of this sort are the shape which gives minimum 

circumferential length for a fixed area, or the shape of a connecting arm for maximum 

strength. Solution of such problems is not very simple and usually requires the application 

of advanced mathematical techniques. Sometimes numerical methods are applied. 

Optimization problems for optimum shape design are generally solved by two 

methods. 

 

i) Direct methods 

ii) Method of Calculus of Variations 

In this section, the direct methods will be studied. The value of criterion is not usually 

unlimited, and the optimum point is obtained at either upper or lower limit. For example, 
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cost is always required to be minimized. Thus, the ideal optimum solution is zero, which 

is never possible. There must be a lowest limit on the cost which is defined by some 

factors necessary for the physical realization of the system. Strength is such a principal 

factor. In other words, to have the necessary minimum strength for a, say, beam, a certain 

amount of material must be used and that is equivalent to the cost. If we can design the 

system such that the effective factors are kept at their limiting values for all of the possible 

conditions, then we obtain the “best solution” and it is an optimum design. 

Mathematically some of the regional constraints are converted to functional constraints 

by considering equality sign instead of inequalities. This cannot be done for all regional 

constraints since in that case, no feasible solution can be obtained. Consider an 

optimization problem, mathematically stated in its proper form as it is discussed before. 

 ).,.........,,(. 321 nxxxxFFOpt    

 0)...,,.........,,(.. 321 ni xxxxgts  i = 1,..m, m<n 

       

 i = 1, p, p has no limit 

In usual applications of this sort, m=0 and p=1 for a practical solution. The boundary 

of the system defined by h1 function is the only feasible solution and it is optimum. 

II.9 OPTIMUM DESIGN BY THE METHOD OF CALCULUS OF 

VARIATIONS  

There is a group of optimization problems which have the criterion function in 

integral equation form. 


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1

),,( 1

x

x

dxyyxFI

 

where I is the criterion function, x is the design parameter, y=y(x) is a mathematical 

function and y1=dy/dx. The integrand function F is known explicitly, and it is required to 

determine y(x) which optimizes the integral value I. By mathematical methods it is 

possible to show that the optimum point is obtained when the Euler-Lagrange condition 

is satisfied. 

0
1

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dx

d
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Knowing F explicitly, one obtains a differential equation which can be solved to 

determine the optimum function y(x). 

II.10 OPTIMIZATION BY NUMERICAL METHODS 

When the number of parameters is large, it is usually difficult to apply manual 

computation. Numerical methods in such cases help us to find the optimum solutions. It 

is a broad area of study and beyond the scope of this text. Several methods, like. 

Exhaustive search, area elimination, Fibonacci search, Golden section method, Grid 

search and Gradient search are discussed in several other books and some of the important 

references are given in the reference list.  

II.11 METHOD of DYNAMIC PROGRAMMING 
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Dynamic programming is developed to solve a special class of problems where multi-

stage decisions are required. For example, consider a problem where we start from the 

first stage and reach to Nth stage (Fig. II.11). There may be several alternative points to 

start on at the first stage and there may be several alternative end points at the final stage. 

Further, the intermediate stages may have many different alternatives. Since in each stage, 

we must select a single alternative, then the successive selection of these alternatives will 

change the value of the criterion function. The types of problems solved by dynamic 

programming are Network problems, resource Allocation and Reliability problems or 

similar cases. 

 

 1    1    1 

 

 

 2    2    2 

 

 

 3    3    3 

 

 

 

 

 m    n    k 

 

Figure II.11 Successive stages and alternatives in Dynamic Programming. 

 

II.11 COMPUTERS IN OPTIMIZATION 

Application of computers in engineering design has fantastically increased the speed 

of the computations in the analysis of the design problems. Since the designer must 

always select among the feasible designs, he must solve the problem by considering every 

possible alternative value. The choice of the final solution is better if the number of 

alternatives is more. Computers are useful in increasing the number of such alternatives 

with their high speeds of computations. 
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{x1, x2, x3, …. xncar} Fcar = Fcar (x1, x2, x3, …. xncar) 

g(x1, x2, x3, …. xncar) =0 h(x1, x2, x3, …. xncar) <>0 

 

{x1, x2, x3, …. xntractor} Ftractor = Ftractor (x1, x2, x3, …. xntractor) 

g(x1, x2, x3, …. xntractor) =0 h(x1, x2, x3, …. xntractor) <>0 

 

{x1, x2, x3, …. xn airplane} Fairplane = Fairplane (x1, x2, x3, …. xn airplane) 

g(x1, x2, x3, …. xn airplane) =0 h(x1, x2, x3, …. xn airplane) <>0 

 

Formulation of optimization problems 

Maximize/Minimize } F = F (x1, x2, x3, …. xn) 

Subject to: 

g1(x1, x2, x3, …. xn) =0 

g2(x1, x2, x3, …. xn) =0 

. . . . . . . . . . . . . . . . . . 

gm(x1, x2, x3, …. xn) =0                where m<n 

h1(x1, x2, x3, …. xn) <>0  

h2(x1, x2, x3, …. xn) <>0 

. . . . . . . . . . . . . . . . . . 

hp(x1, x2, x3, …. xn) <>0                where p has no limit. 

  

CREATIVITY 

Requirements Limitations DECISION MAKING 

Feasible Designs 

OPTIMIZATION 
Mathematical Model 

Optimum Design 

PRODUCTION 
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Max./Min F = F (x1, x2, x3, …. xn)  

S. t.: 

gi(x1, x2, x3, …. xn)=0        i=1,m and m<n 

hj(x1, x2, x3, …. xn)<>0      j=1,p and p has no limit. 

 

 

 

 

 

 

 

Functional/Regional Constraints 

Objective/Criteria Function  

 

 

UNCONSTRAINED OPTIMIZATION 

 

Max./Min. 
} F = F (x1, x2, x3, …. xn) 

S. t.: 

gi(x1, x2, x3, …. xn) =0        i=1, ... m and    m=0 

hj(x1, x2, x3, …. xn) <>0      j=1, … p and     p=0 

 

Max. 

Min. 
} F = F (x1, x2, x3, …. xn) 

 

 

        F(x) 

If n=1 

 

F=F(x) and  

 

 

 

   max.         min.           

x 

 

df/dx = 0             optimum x values. 

If n > 1 and m=0 and p=0 

dF=0 and therefore, 

0
x

F
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

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, 

0
x

F

2






, 

0
x

F

3






, . . . . . . . . . . 

0
x

F

n






 

Solve for n variables {x1, x2, x3, …. xn} and n equations. 
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CONSTRAINED OPTIMIZATION (Functional constraints) 

Max./Min. F = F (x1, x2, x3, …. xn) 

s. t.:    gi(x1, x2, x3, …. xn) =0        i=1...m and    0<m<n 

   hj(x1, x2, x3, …. xn) <>0      j=1...p and     p=0 

 

Max/Min F = F (x1, x2, x3, …. xn)  

s. t.: gi(x1, x2, x3, …. xn) =0 i=1…m and    0<m<n 

 

Method of Lagrange Multipliers 
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Method of Parameter Elimination 

Max./Min F = F (x1, x2, x3, …. xn) 

S. t.: gi(x1, x2, x3, …. xn)=0        i=1,m and    0<m<n 

Eliminate g i 

gi(x1, x2, x3, . . .  xr-1, xr, xr+1, . . . xn)=0 

 

 

xr=r(x1, x2, x3, . . . xr-1, xr+1, . . . xn) 

 

 

F=F(x1, x2, x3, . . .  xr-1, xr, xr+1, . . . xn) 

F'=F'(x1, x2, x3, . . .  xr-1, xr+1, . . . xn) 

n is reduced by 1, one of gi is eliminated. 

Use all gi I=1…m to eliminate m x variables. 

F=F(X1, X2, X3, . . . XN) 

Where N=n-m 

Therefore, we have reduced the constrained problem to an unconstrained problem. 

Hence. 

0
X

F
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
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

 
0

X

F
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. . . . 
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

  

 

CONSTRAINED OPTIMIZATION (Regional constraints) 

Max./Min F = F (x1, x2, x3, …. xn) 

s.t.: gi(x1, x2, x3, …. xn) =0        i=1...m and    m=0 

hj(x1, x2, x3, …. xn) <>0      j=1...p and     p>0 

 

Consider n=1, F=F(x) 

    F(x) 

 

 

 

     Min.       Max.      x 
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Non-negativity conditions    Regional constraint (ΦD>5 cm) 

  

  

Mathematical optimum and feasible optimum points are different concepts. 

X

2 

 

 

                                      X1    

        Feasible Region 
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X

2 

 

 

                                      X1    

 Fmin       F1   F2    F3     F4     F5     F6 Fmax 

  

Fmin<F1<F2<F3<F4<F5<F6<Fmax  

Any Machine Element 

1- Functional requirement parameters 

2- Desirable/undesirable effects 

3- Uniqueness 

Design Parameters 

1- Functional requirement parameters 

2- Desirable/Undesirable effect parameters 

3- Geometrical parameters 

4- Material parameters 

Procedure 

Step 1- Draw a free hand sketch. Select independent design parameters to define the 

artifact uniquely. 

Step 2- Decide on the most significant criterion and write F=F(x1, x2, ...,xn) 

Step 3- Write all related equations g(x1, x2, ...,xn)=0. 

Step 4- Write limit relations. h(x1, x2, ...,xn)><0. 

Step 5- Eliminate common parameters between g and h. 

 Rules: Eliminate unlimited parameters 

   Do not eliminate material parameters 

Step 6- Draw rough sketches for F vs xi for all xi except material parameters. 

Step 7- Apply mathematical optimization techniques to find optimum solution. 

Step 8- Determine material selection factor and select the optimum material. 

Step 9- Determine the optimum values of the eliminated parameters. 

 

List of significant criteria 

A) List the criteria in the order of significance 

Fx    Objective Function / Primary Design Criterion 
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Fy 

Fu  

     g(x1, x2, ...,xn)=0 or h(x1, x2, ...,xn)><0. 

 

Fz 

Solve for the optimum values as formulated here. If some of the parameters are not 

determined, drop Fx, move Fv up and re-solve the optimization problem. Repeat this 

procedure until all of the design parameters are determined.  

B) Define an equivalent criterion function. 

F=ψ1F1 + ψ2 F2 + ψ3 F3 + … ψk Fk 

 Where ψ1, ψ2, ψ3, … ψk are weighing factors. 

Limits 

● Loose limits 

● Rigid limits 
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In this text, the most common optimization methods in mechanical engineering 

applications will be considered very briefly. Theoretical basis of the methods and their 

details will not be studied. It should be remembered that the mathematical approaches 

given here are adapted for mechanical engineering design applications. Thus, the 

techniques discussed in this text may have differences from the purely mathematical 

applications, advanced mathematical models must be studied. Literature for further 

reading is given at the end of the text. 

It is possible to classify the optimization methods in several ways. Constrained and 

Unconstrained Optimization is one way, Numerical or Analytical Optimization is another 

way. For such a general classification, mathematical backgrounds should be considered 

in detail. Since our aim in this text is mechanical engineering design applications only, 

we shall consider most applicable methods under different headings, even if their 

mathematical basis is the same. 

T.3 Apply method of differentiation 

Q.4 Is the criterion function differentiable? 

Q.5 Is the method of calculus of variations applicable? 

T.4 Apply calculus of variations techniques 

R Reformulate the problem. 

T.5 Apply engineering optimization approaches. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2 Arbitrary forms of a one -variable function (F(x) 
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II.5 METHOD of LINEAR PROGRAMMING  

It was shown that any optimization problem can be formulated in three groups of 

equations. 

Max./Min. F=F(x1,x2,......, xn) 

s.t. gi(x1,x2,.........., xn) = 0 i = 1, m  m<n 

 hi(x1, x2,........., xn)  0 i = 1, p  p has no limit. 

There is a vast group of problems where the above relations are all linear. Thus, the 

general form of the optimization problem is in the following form: 

Max.Min. F=f1x1+f2x2+f3x3+..........+fnxn 

s.t. gi1x1+gi2x2+...........+ginxn+ci = 0 

 i = 1, m m<n 

 hi1x1+hi2x2+............+ hinxn+ki0 

 i = 1, p p has no limit. 

Where Ci and Ki are plain numerical constraints. 

Further the problem can be so arranged that all the design parameters can have positive 

values only. 

 x1  0,  x2  0, ............xn  0 

 

This is called non-negativity condition. 

The above problem can be re-formulated in the matrix form. The criterion function is 

a product of two matrices. That is; 

F =  f T  x  

Where  f T is the transpose of   f  and; 
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and non-negativity conditions in matrix form are: 

 x    0  

Considering the above matrix equations, the optimization problem can be written in 

terms of four matrix relations. 

Max. Or Min. F =  f T  x  

s.t.  G  x  =  C  

  H  x    K  

 x    0  

Any optimization problem which is formulated in this form can be solved by a method 

which is called Linear Programming. It is possible to show the method of solution by 

matrix algebra, but it is beyond the scope of this text. Two dimensional problems can be 

solved by purely graphical means, and it is very useful. If the number of parameters is 

more than 2, there are some methods (most applicable one is Simplex Tableaux) to obtain 

the optimum point. Although hand calculations are possible it is time consuming and 

prone to make calculation errors. Instead, computer techniques are preferred. Almost all 

companies provide ready-to-use Linear Programming packages supplied with their 

computers. The only work to be done by the user is to supply the numerical coefficients; 

in other words, the matrices  f , G and  H  must be given as the input data. The 

optimum point (if exists) and some information is given as output by the computer. 

Some optimization problems cannot be readily put in a format suitable for Linear 

Programming. The most common headache for mechanical design applications is the non-

negativity conditions. Generally, we have; 

M  xr  + M 

where xr is any design parameter and M is a positive number, including . It is possible 

to define two new parameters xr’ and xr” such that; 

111

rrr xxx     

with the condition. 

,01 rx  011 rx  

Therefore, xr is replaced by 
111

rr xx  , the linearity of the relations are still maintained 

and non-negativity conditions are satisfied.  

If the criterion function or constraints are not in linear form, we can either approximate 

them as linear equations in certain ranges (see Fig. II.5) or apply some mathematical 

tricks. To illustrate this suppose we have a function as: 

nxxxxF a

n

aaa .......321 321  

where a1, a2, ..........an are constants. This is an exponential equation and cannot be 

used in Linear Programming. If we take logarithm of both sides, we obtain a linear 

equation in terms of logarithms of parameters. 

nn nxanxanxanF   ......2211  

Defining new parameters as; 
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nFF 1
 

,1

1

1 nxx   nn nxxnxx   1

2

1

2 ..,.........  

we have 

11

2

1

2

1

11

1 ............. nnxaxaxaF   

This is a linear equation, and the method can be applied without any difficulty. Some 

other mathematical tricks, depending on the user’s ingenuity can be found and applied 

successfully. 

It was stated that two-dimensional Linear Programming problems can be solved by 

graphical methods. This will be illustrated now. Consider a two-parameter problem in its 

most general form. 

Max. Min. 2211 xfxfF   

s.t.  0,0

0

...................................

0

0

0

21

2211

2222121

1212111

2211











xx

Kxhxh

Kxhxh

Kxhxh

Cxgxg

ppp

 

All these relations can be shown on a 2-dimensional plot. Firstly, non-negativity 

conditions exclude all the quadrants except the first. Consider criterion function F in the 

first quadrant. Since f1 and f2 are known numerically, for any arbitrary value of F, a 

straight line can be drawn in x1-x2 plane (Fig, II.6). F1, F2, ......are such lines and they are 

naturally parallel. The value of F increases in the direction of arrow depending on the 

signs of f1 and f2. That is; 

Either F1>F2>F3>F4.....or F1<F2<F3<F4 is true. 

Thus, the optimum (Maximum or Minimum) point can be reached by moving in the 

direction (or against it) of arrow. How far we will move is determined by the constraints.  

The functional constraint defines a line in x1-x2 plane and if it is satisfied by the design 

parameters, it defines a feasible region along the line segment AB only. Any point on this 

line is a feasible point and the optimum point is one of these (Fig.II.7). 

Consider the regional constraints in x1-x2 plane. Let us take the first, 

01212111  Kxhxh  
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Figure II.5 

 

 

 

 

 

 

Figure II.6 

 

 

 

 

 

 

 

 

 

Figure II.7 

 

 

 

 

 

 

 

 

 

 

Figure II.8 
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Depending on numerical values and signs of h11, h12 and K, the inequality relation 

divides the first quadrant into two regions (Fig. II.8). The points in the hatched region do 

not satisfy the inequality therefore they are not feasible points. Any point in the feasible 

region may be an optimum point. When the regional constraints are plotted on the same 

figure, we obtain the common feasible region defined by all of the regional constraints 

(Fig. II.9). Further imposing the functional constraint on this figure (Fig. II.10), we have 

the final feasible region as a line segment in x1-x2 plane. Usually, such problems do not 

have functional constraints, thus similar regions as shown in Fig. II.9 are obtained. 

 

 

 

 

 

 

 

 

 

 

Figure II.9 

 

 

 

 

 

 

 

 

 

 

 

Figure II.10 

To find the optimum point, it is sufficient to draw the parallel lines represending the 

criterion function. The maximum or minimum point will be on one of the corners of the 

feasible region. 

Applications of Linear Programming problems can be summarized in 4 groups. 

1. Alloying: Several elements with different costs and properties are considered and 

Linear Programming is applied to find minimum cost with the given constraints. 

Metallurgical alloying, liquid blending, ore combinations and cattle feed mixing are 

examples. 

2. Job Allocation: The machines (capacity and time) labor, and raw materials are 

arranged such that the total profit from production of several items is maximized. 

3. Production Scheduling: The production rates of several products are determined 

by considering Supply, Demand, Inventory and Storage facilities. 
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4. Transportation: The best routes and schedules are determined for all sorts of 

vehicles. 

II.6 AN APROACH TO SOLUTIONS OF OPTIMIZATION PROBLEMS FOR 

ENGINEERING APPLICATIONS 

An optimization method, applied particularly in mechanical engineering design, is 

described by Johnson in his several books and papers (14, 15). It is a clearly described 

procedure for optimization problems rather than being a mathematical optimization 

method. The steps of optimization are clearly defined and confusion in many variable 

problems are reduced by a systematic approach. Several interesting examples are solved 

by the described procedure. We think that the procedure given by Johnson can be applied 

to any optimization problem and the mathematical methods described in the previous 

sections can be used within the procedure. In the next sections, the procedure will be 

described with some small changes. But before this, there are several concepts which 

must be explained clearly. 

Any machine or machine element has generally three basic properties. 

4. Functional Requirement Properties. 

5. Desirable or Undesirable Effects. 

6. Uniqueness. 

Now, we shall study these properties: 

4. Functional Requirement Properties: Any machine or machine element is designed 

for a certain purpose. It must perform its functions in this predetermined way. Consider a 

spring, which is designed to exert a force F. Then the force F is a functional requirement. 

It is a property that we expect from the spring. Similarly, a shaft must transmit torque, a 

gearbox must transmit the power at a certain input and output speed, a cam must give a 

predetermined displacement to its follower, and finally a structural number (leg of a table 

in its simplest form) must carry a certain weight. It is clear that the functional 

requirements must be satisfied in a predetermined way, as predicted by the designer. 

5. Desirable and Undesirable Effects: In designing the machines and its elements to 

satisfy the functional requirements, there are some properties which are unavoidable for 

a real physical system. For example, a spring cannot be designed with an imaginary 

material and since all of the real materials have a certain upper limit for the stresses, then 

the stress is an unavoidable property. Similarly, any real material has a weight under the 

gravitational field and it is again unavoidable. Deflection, space occupancy, vibration and 

natural frequency are other properties for any simple helical spring. Some of these 

properties are desirable and some are undesirable depending on the application. For 

example, weight in some applications can be desired whereas in some others it is not 

desired. Other examples for desirable and undesirable effects are surface quality, 

machinability, length, diameter, appearance, comfortability stability, volume, cost, 

production time etc. All of these effects, if significant, must be considered in any 

optimization problem. 

6. Uniqueness: Any machine or machine element can be defined completely if all 

the dimensional parameters and the materials parameters are specified. This statement 

can be put in reverse order; any machine or machine element can be specified completely 
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once all the material parameters and geometrical parameters are known. The geometrical 

parameters are length, diameter, width, height, tolerances etc., and the material 

parameters are Elasticity modulus, Yield Point, Weight density, Unit Cost, Poisson’s ratio 

etc.  

In any design problem statement, the above properties are either specified numerically 

or their allowable limits are given. Thus, a diameter can be required to lie between, say, 

5 mm and 15 mm or a spring force can be stated to have values 50 kg  10 kg.  natural 

frequency can have any value between 0 and  in its widest range. Usually, all the 

properties and their corresponding parameters have lower and upper limits. If these lower 

and upper limits are required, it is called a RIGID LIMIT, if slight changes on these 

limiting values are permissible, then these are called LOOSE LIMITS. Loose limits are 

useful when it is possible to obtain better solutions for the design problems with slight 

changes in the limiting values. Apparently, these “Slight changes” should not make the 

solution impossible or impractical.  

During the mathematical formulation of the problem, the above stated properties are 

expressed in terms of four groups of parameters. 

5. Functional Requirement parameters, 

6. Desirable and Undesirable effect parameters,  

7. Geometrical parameters, 

8. Material parameters. 

Functional Requirement parameters include the mathematical equivalents of the 

functional requirement properties. They are usually external to the machine or machine 

element. Mostly they express the relation between the neighborhood machines. (Torque 

of gear is transmitted from a shaft, and shaft receives the power from an electric motor). 

Thus, before starting a design, the functional requirement parameters must be known and 

determined due to the external effects. Sometimes the resulting values of these parameters 

are defined as the effect of the design to the design to the surroundings. In both cases, it 

is considered as the overall reaction to the next machine or element (system). 

1. Desirable and Undesirable Effect parameters are determined terms of design 

parameters during the design process. They do not affect the design of the other machines 

or elements directly. Only a cumulative effect on the most general system is possible. For 

example, the total cost of a machine is the sum of the cost of each machine element. 

2. Geometrical parameters are usually independent of each other, but they determine 

the previous two groups of parameters. If they are limited, the geometrical parameters are 

dependent on each other. There may be also limiting values on the geometrical 

parameters. Usually, the designer finds great freedom in changing the geometrical 

parameters independently. But he must be careful not to violate the limits. The 

geometrical parameters are mostly continuous variables like diameter or length of a shaft 

to be turned on a lathe. But sometimes they have stepwise variation. The standardized 

machine elements (Roller bearings, bolts, screws, gears (partially) and others). Have 

some preferred dimensions and the designer must make his choice among these values. 

3. Material parameters are described in discussing material properties. Their 

common property is the interdependence of all the material parameters. If some of the 
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material parameters are determined (say, yield point) the number of alternative materials 

is limited. In any design application, the number of available materials is limited and not 

more than 10 or a close figure. If the material name is known, then all of the material 

parameters are known. Specifying C-1040 with its commercial name is equivalent to 

specifying all its related parameters. 

Most of the parameters in these four groups must remain within some practical 

limiting is called a feasible parameter set. One of these sets is the optimum design. The 

optimization is based on one of the functional requirements and/or desirable and 

undesirable effects. 

There are three groups of mathematical relations in any optimization problem as was 

discussed before. The names given previously were adapted from mathematical theories. 

We shall now introduce and use names which are more proper for engineering design. 

The Primary Design Equation (PDE) corresponds to the criterion function. It is the 

most significant functional requirement, Desirable effect, or Undesirable effect. The 

choice of maximization and minimization depends on the problem. The most common 

applications are given below. 

Minimize: Cost, Weight, Volume, Deflection, Natural Frequency, Length, Speed, 

Instability, Force, Area, Stress, ........ 

Maximize: Power Transmission Capability, Energy Storage, Speed, Natural 

Frequency, Weight, Length, Stability, Force, Area, Safety Factor, ....... 

The designer must be careful that some negative properties like cost must never be 

maximized and positive properties like efficiency, power transmission capability must 

never be minimized. 

Besides the nature of the property to be optimized, the application also determines the 

choice. Consider a shaft, exactly similar in two different applications like Stone Crashing 

machine and Aircraft. The criterion of shaft design for the Aircraft will be “minimum 

weight”. The weight is not important at all in the first case and perhaps torque 

transmission capability will be the design criterion. 

Subsidiary Design Equations (SDE) are all of the equality relations other than the 

Primary Design Equation. These were called previously as functional constraints. 

Limit Equations are the regional constraints of mathematical methods. 

All the equations should be arranged such that the parameters stated above will appear 

as independent parameter groups. This is not always possible, and some mathematical 

tricks (like defining new parameters) is applied in such cases. These are illustrated in the 

examples to be given later. 

The procedure of optimization has 9 steps: 

Step 1: Draw a free hand sketch of the system and show all of the related parameters. 

Select the independent parameters which will uniquely define the geometry. If a choice 

exists, select parameters which are either specified as functional requirements or limited 

to permissible values. 

Step 2: Decide on the most significant criterion for optimization and write the 

mathematical expression. This is the Primary design equation (PDE). If possible, write 

this equation in terms of parameter groups. 
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Step 3: Write the equations for all other significant functional requirements and 

desirable and undesirable effects. These equations are Subsidiary Design Equations 

(SDE). 

Step 4: Write the mathematical limit equations for all the parameters. Indicate rigid 

and loose limits. 

Step 5: Eliminate a common design parameter from the Primary Design Equation for 

each Subsidiary Design Equation. Re-write the remaining Subsidiary Design Equations 

and Limit equations in terms of the remaining design parameters. If choice exists 

eliminate unlimited and unspecified parameters. Do not eliminate material parameters 

since they are dependent on each other and have limited ranges. Dimensional parameters 

limited within finite ranges should not be eliminated, if it is not necessary. At the end of 

this step, the original design equation is written in terms of limited parameters and 

geometrical parameters. This equation is called Develop Primary Equation (DPDE). 

Step 6: From the Develop PDE, obtain variation of the design criterion w.r.t. each of 

the parameters (except material parameters). Draw rough sketches indicating the general 

trend of the criterion within the feasible range of the parameters. 

Step 7: Considering the variations determined in the previous step, obtain optimum 

design quantities. If it is necessary, apply the mathematical optimization techniques. The 

set of optimum parameters defined at this step must define a unique system with the 

design criterion as optimized. 

Step 8: The only remaining parameters are material parameters, and they can be 

independently isolated from the other parameters before the 7th step. Select the optimum 

material by considering the Material Selection Factor and available materials for the 

design problem. Remember that the optimum material must be one of the available 

materials and material parameters are dependent on each other. 

Step 9: Determine optimum values for the eliminated parameters by using the known 

optimum parameters.  

II.7 METHOD of OPTIMUM SHAPE DESIGN 

Sometimes it is required to determine the optimum shape of machine element with a 

particular criterion. Examples of this sort are the shape which gives minimum 

circumferential length for a fixed area, or the shape of a connecting arm for maximum 

strength. Solution of such problems is not very simple and usually requires the application 

of advanced mathematical techniques. Sometimes numerical methods are applied. 

Optimization problems for optimum shape design are generally solved by two 

methods. 

i) Direct methods 

ii) Method of Calculus of Variations 

In this section, the direct methods will be studied. The value of criterion is not usually 

unlimited, and the optimum point is obtained at either upper or lower limit. For example, 

cost is always required to be minimized. Thus, the ideal optimum solution is zero which 

is never possible. There must be a lowest limit of the cost which is defined by some factors 

necessary for the physical realization of the system. Strength is such an important factor. 

In other words, to have the necessary minimum strength for a, say, beam, a certain amount 
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of material must be used and that is equivalent to the cost. If we can design the system 

such that the effective factors are kept at their limiting values for all of the possible 

conditions, then we obtain the “best solution” and it is an optimum design. 

Mathematically some of the regional constraints are converted to functional constraints 

by considering equality sign instead of inequalities. This cannot be done for all regional 

constraints since in that case, no feasible solution can be obtained. Consider an 

optimization problem, mathematically stated in its proper form as it is discussed before. 

 ).,.........,,(. 321 nxxxxFFOpt    

 0)...,,.........,,(.. 321 ni xxxxgts  i = 1,..m, m<n 

      ℎ𝑖 (𝑥1, 𝑥2, 𝑥3, . . . . . . . . . . . . , 𝑥𝑛) = 0ℎ𝑖 (𝑥1, 𝑥2, 𝑥3, . . . . . . . . . . . . , 𝑥𝑛) = 0 

 i = 1, p, p has no limit 

In usual applications of this sort, m=0 and p=1 for a practical solution. The boundary 

of the system defined by h1 function is the only feasible solution and it is optimum. 

 

 

 

 

II.8 OPTIMUM DESIGN BY THE METHOD OF CALCULUS OF 

VARIATIONS  

There is a group of optimization problems which have the criterion function in 

integral equation form. 


2

1

),,( 1

x

x

dxyyxFI

 

where I is the criterion function, x is the design parameter, y=y(x) is a mathematical 

function and y1=dy/dx. The integrand function F is known explicitly, and it is required to 

determine y(x) which optimizes the integral value I. By mathematical methods it is 

possible to show that the optimum point is obtained when the Euler-Lagrange condition 

is satisfied. 

0
1
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aF

dx

d
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Knowing F explicitly, one obtains a differential equation which can be solved to 

determine the optimum function y(x). 

II.9 OPTIMIZATION BY NUMERICAL METHODS 

When the number of parameters is large, it is usually difficult to apply manual 

computation. Numerical methods in such cases help us to find the optimum solutions. It 

is a broad area of study and beyond the scope of this text. Several methods, like. 

Exhaustive search, area elimination, Fibonacci search, Golden section method, Grid 

search and Gradient search are discussed in several other books and some of the important 

references are given in the reference list.  

II.10 METHOD of DYNAMIC PROGRAMMING 
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Dynamic programming is developed to solve a special class of problems where multi-

stage decisions are required. For example, consider a problem where we start from the 

first stage and reach to Nth stage (Fig. II.11). There may be several alternative points to 

start on at the first stage and there may be several alternative end points at the final stage. 

Further, the intermediate stages may have many-different alternatives. Since in each 

stage, we must select a single alternative, then the successive selection of these 

alternatives will change the value of the criterion function. The types of problems solved 

by dynamic programming are Network problems, resource Allocation and Reliability 

problems or similar cases. 

II.11 COMPUTERS IN OPTIMIZATION 

Application of computers in engineering design has fantastically increased the speed 

of the computations in the analysis of the design problems. Since the designer must 

always select among the feasible designs, he must solve the problem under considering 

for every possible alternative value. The choice of the final solution is better if the number 

of alternatives is more. The computers are useful in increasing the number of such 

alternatives with their high speeds of computations. 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

 

 

 

 

 

  

 

{x1, x2, x3, …. xncar} Fcar = Fcar (x1, x2, x3, …. xncar) 

g(x1, x2, x3, …. xncar) =0 h(x1, x2, x3, …. xncar) <>0 

 

{x1, x2, x3, …. xntractor} Ftractor = Ftractor (x1, x2, x3, …. xntractor) 

g(x1, x2, x3, …. xntractor) =0 h(x1, x2, x3, …. xntractor) <>0 

CREATIVITY 

OPTIMIZATION 

PRODUCTION 

Requirements Limitations DECISION MAKING 

Optimum Design 

Feasible Designs 

Mathematical Model 
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{x1, x2, x3, …. xn airplane} Fairplane = Fairplane (x1, x2, x3, …. xn airplane) 

g(x1, x2, x3, …. xn airplane) =0 h(x1, x2, x3, …. xn airplane) <>0 
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Formulation of optimization problems 

Maximiz

e 

Minimize 

} F = F (x1, x2, x3, …. xn) 

Subject to: 

g1(x1, x2, x3, …. xn) =0 

g2(x1, x2, x3, …. xn) =0 

. . . . . . . . . . . . . . . . . . 

gm(x1, x2, x3, …. xn) =0                where m<n 

h1(x1, x2, x3, …. xn) <>0  

h2(x1, x2, x3, …. xn) <>0 

. . . . . . . . . . . . . . . . . . 

hp(x1, x2, x3, …. xn) <>0                where p has no limit. 

 

Max./Mi

n 
F = F (x1, x2, x3, …. xn) 

 

S. t.: 
gi(x1, x2, x3, …. xn)=0        i=1,m and m<n 

hj(x1, x2, x3, …. xn)<>0      j=1,p and p has no limit. 
 

Functional/Regional Constraints 

Objective/Criteria Function  

 

 

II.13 UNCONSTRAINED OPTIMIZATION 

 

Max./Min. 
} F = F (x1, x2, x3, …. xn) 

S. t.: 

gi(x1, x2, x3, …. xn) =0        i=1, ... m and    m=0 

hj(x1, x2, x3, …. xn) <>0      j=1, … p and     p=0 

 

Max. 

Min. 
} F = F (x1, x2, x3, …. xn) 

 

 

        F(x) 

If n=1 

 

F=F(x) and  

 

 

 

   max.         min.           

x 
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df/dx = 0             optimum x values. 

If n > 1 and m=0 and p=0 

dF=0 and therefore, 

0
x

F
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F

2
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0
x
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0
x

F

n






 

Solve for n variables {x1, x2, x3, …. xn} and n equations. 

 

II.14 CONSTRAINED OPTIMIZATION (Functional constraints) 

Max./Min. F = F (x1, x2, x3, …. xn) 

s. t.:    gi(x1, x2, x3, …. xn) =0        i=1...m and    0<m<n 

   hj(x1, x2, x3, …. xn) <>0      j=1...p and     p=0 

 

Max/Min F = F (x1, x2, x3, …. xn)  

s. t.: gi(x1, x2, x3, …. xn) =0 i=1…m and    0<m<n 

 

Method of Lagrange Multipliers 
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Method of Parameter Elimination 

Max./Min F = F (x1, x2, x3, …. xn) 

S. t.: gi(x1, x2, x3, …. xn)=0        i=1,m and    0<m<n 

Eliminate g i 

gi(x1, x2, x3, . . .  xr-1, xr, xr+1, . . . xn)=0 

 

 

xr=r(x1, x2, x3, . . . xr-1, xr+1, . . . xn) 

 

 

F=F(x1, x2, x3, . . .  xr-1, xr, xr+1, . . . xn) 

F'=F'(x1, x2, x3, . . .  xr-1, xr+1, . . . xn) 

n is reduced by 1, one of gi is eliminated. 

Use all gi I=1…m to eliminate m x variables. 

F=F(X1, X2, X3, . . . XN) 

Where N=n-m 

Therefore, we have reduced the constrained problem to an unconstrained problem. 

Hence. 

0
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II.15 CONSTRAINED OPTIMIZATION (Regional constraints) 

Max./Min F = F (x1, x2, x3, …. xn) 

s.t.: gi(x1, x2, x3, …. xn) =0        i=1...m and    m=0 

hj(x1, x2, x3, …. xn) <>0      j=1...p and     p>0 

 

Consider n=1, F=F(x) 

    F(x) 

 

 

 

     Min.       Max.      x 

 

 

 

Non-negativity conditions    Regional constraint (ΦD>5 cm) 
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Mathematical optimum and feasible optimum points are different concepts. 

X

2 

 

 

                                      X1    

        Feasible Region 

   

X

2 

 

 

                                      X1    

 Fmin       F1   F2    F3     F4     F5     F6 Fmax 
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Fmin<F1<F2<F3<F4<F5<F6<Fmax  

Any Machine Element 

4- Functional requirement parameters 

5- Desirable/undesirable effects 

6- Uniqueness 

Design Parameters 

5- Functional requirement parameters 

6- Desirable/Undesirable effect parameters 

7- Geometrical parameters 

8- Material parameters 

Procedure 

Step 1- Draw a free hand sketch. Select independent design parameters to define the 

artifact uniquely. 

Step 2- Decide on the most significant criterion and write F=F(x1, x2, ...,xn) 

Step 3- Write all related equations g(x1, x2, ...,xn)=0. 

Step 4- Write limit relations. h(x1, x2, ...,xn)><0. 

Step 5- Eliminate common parameters between g and h. 

 Rules: Eliminate unlimited parameters 

   Do not eliminate material parameters 

Step 6- Draw rough sketches for F vs xi for all xi except material parameters. 

Step 7- Apply mathematical optimization techniques to find optimum solution. 

Step 8- Determine material selection factor and select the optimum material. 

Step 9- Determine the optimum values of the eliminated parameters. 
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List of significant criteria 

C) List the criteria in the order of significance 

Fx    Objective Function / Primary Design Criterion 

Fy 

Fu  

     g(x1, x2, ...,xn)=0 or h(x1, x2, ...,xn)><0. 

 

Fz 
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PART III 

CASE STUDIES and  

DESIGN ENGINEERING 

APPLICATIONS 
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Case Study 1 

 

 

Case Study 2 

 

 

Case Study 3 

 

 

Case Study 4 

 

 

Case Study 5 
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CASE STUDY 1 

Solve for the optimum values as formulated here. If some of the parameters are not 

determined, drop Fx, move Fv up and re-solve the optimization problem. Repeat this 

procedure until all of the design parameters are determined.  

D) Define an equivalent criterion function. 

F=ψ1F1 + ψ2 F2 + ψ3 F3 + … ψk Fk 

 Where ψ1, ψ2, ψ3, … ψk are weighing factors. 

Limits 

● Loose limits 

● Rigid limits 

 STEP 1 

 

        V=2000 cm3 

        l      h should not exceed 2 cm 

        thickness (t) material should 

        be at least 3 mm 

      w          h  

 

 STEP 2 

CT= Cm + Ct + Cl + Co  Material, Tooling, Labor, Overhead costs. 

Cm= cmρVm  and   Vm = wlt + 2wht + 2lht 

Therefore  

Cm= cmρt ( wl + 2wh + 2lh )   F=F(x1, x2, x3, xn) 

 STEP 3 

V = wlh = 2000 cm3     g(x1, x2, x3, xn)=0 

 STEP 4 

h < 2 cm 

t > 3 cm      hj(x1, x2, x3, xn)>0 

CT α Cm  other cost factors are fixed. 

 

M

in. 
Cm= cmρt ( wl + 2wh + 2lh ) F=F(x1, x2, x3, xn) 

s.t

.: 

wlh - 2000 = 0 g(x1, x2, x3, xn)=0 

h - 2 < 0 h1(x1, x2, x3, xn)>0 

t - 0.3 > 0 H2(x1, x2, x3, xn)>0 

  

  

 STEP 5 

w=V / lh Eliminate w in Cm= cmρt ( wl + 2wh + 2lh ) xr=r(x1, …, xn) 

Cm= cmρt ( 2000/h + 4000/l + 2lh ) 
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cmρ: Material parameters group (Material Selection Factor) 

t, h, l are independent geometrical parameters 

 

 STEP 6 

t      Cm therefore for minimum Cm, t should be minimum. 

Topt=3 mm 

                Feasible region 

 Cm                     Infeasible region 

 

 

 

         2 cm          7.94  h 

 

 STEP 7 

Cm= K ( V/h + 2V/l + 2lh )  (V=2000 is fixed) 

δCm/δh= K ( - V/h2 + 2l )=0 

δCm/δl= K ( - V/l2 + 2h )=0 

Solution: 

lopt=(2V)1/3 = 15.87 cm 

hopt=(V/4)1/3 = 7.94 cmIF  

          Feasible region 

 Cm            Infeasible region 

 

 

 

         2 cm          7.94  h 

 

 

Solution: 

hopt= 2 cm 

lopt= V / h = 31.6 cm 

wopt= V / h = 31.6 cm 

Further suppose that w < 20 cm 

wopt = 20 cm 

lopt = 50 cm 

 

 STEP 8 

 

Material Selection factor: MSF = cmρ  cmρ Material 

  

                            Minimum cmρ 

___ 

___ 

___ 

...... 

A 

B 

C 

.... 

 STEP 9 
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Compute woptŁ = cmρt ( wl + 2wh + 2lh ) +  λ ( wlh - 2000 ) 

solving d Ł = 0 should give thesame result. 

 

CASE STUDY 2 

 

         F 

                 

   

               BXh        
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 This equation must be maximized. 
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Design parameters: N,,,,,,,I,A,d,h,b,L,w,w,F maxallTWF   

N=16 

M=10 or 9 
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CASE STUDY 2 EXAMPLE     2 
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CASE STUDY 3 

 

 Insulator 

 

 

 

                                                              Solar collector as heat source 

  

 

Convection and Radiation 
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Maximize  

S. t.:    

    

    

    

    

    

   

 

  

 

            

            

            

              

 

 

 

 

 

 

 

Design parameters:  

N=16 

M=10 or 9 

P=5 or 7 
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Q.1 Is it possible to develop a mathematical model for the physical 

system? 

T.1 Apply Logical Optimization Techniques 

Q.2 Are the constraints and criteria function linear? 

T.2 Apply Linear Programming Techniques  

Q.3 Is there any regional constraints? 
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PART IV 

DESIGN ENGINEERING 

FOCUSED CASE STUDIES & 

PROBLEMS 

for FURTHER STUDIES 


